CBCs sch $i x i ~$
 USN

 Third Semester B.E. Degree Examination, Aug./Sept. 2020 Network Theory

18EC32

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

1 a. Using source shifting and source transformation techniques, find the value of V_{x} for the circuit in Fig.Q1(a).

Fig.Q1(a)
(10 Marks)
b. Use Mesh analysis to the circuit shown in Fig.Q1(b) to find the power supplied by 4V source.

Fig.Q1(b)
(10 Marks)
OR
2 a. Find the resistance R_{xy} for the circuit shown in Fig.Q2(a) using star-delta transformation.

Fig.Q2(a)
(10 Marks)
b. Find I_{1} in the circuit of Fig.Q2(b) using nodal analysis.

Fig.Q2(b)
(10 Marks)

Module-2

3 a. Use superposition theorem to find i_{0} in the circuit shown in Fig.Q3(a).

Fig.Q3(a)
(10 Marks)
b. Find the Thevenin's and Norton's equivalent circuits at the terminals a-b for the circuit in Fig.Q3(b).

(10 Marks)

4 a. Find the current through $(10-\mathrm{j} 3) \Omega$ using Millman's theorem Refer Fig.Q4(a).

Fig.Q4(a)
(10 Marks)
b. Find the value of R_{L} for the network shown in Fig.Q4(b) that results in maximum power transfer. Also find the value of maximum power.

Fig.Q4(b)
(10 Marks)
Module-3
5 a. For the circuit shown in Fig.Q5(a), the switch K is changed from position 1 to position 2 at $t=0$. Steady-state condition having been reached at position 1 . Find the values of

[^0]

Fig.Q5(a)
(10 Marks)
b. For the circuit shown in Fig.Q5(b), steady-state is reached with switch K open. At $t=0$, the switch is closed. Determine the values $\mathrm{V}_{\mathrm{a}}\left(0^{-}\right)$and $\mathrm{V}_{\mathrm{a}}\left(0^{+}\right)$.

Fig.Q5(b)
(10 Marks)

OR

6 a. In the network shown in Fig.Q6(a), the switch K is opened at $t=0$. Find $\mathrm{v}, \frac{\mathrm{dv}}{\mathrm{dt}}$ and $\frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$.

Fig.Q6(a)
(10 Marks)
b. For the circuit shown in Fig.Q6(b) find :
i) $\mathrm{i}\left(0^{+}\right)$and $\mathrm{v}\left(0^{+}\right)$
ii) $\frac{\operatorname{di}\left(0^{+}\right)}{d t}$ and $\frac{\operatorname{dv}\left(0^{+}\right)}{d t}$
iii) i(∞) and $v(\infty)$.

Fig. Q6(b)
(10 Marks)

Module-4

7 a. State and prove initial-value theorem and final-value theorem.
(10 Marks)
b. For the circuit of Fig.Q7(b).
i) Write a differential equation for $i_{L}(t)$ ii) find $I_{L}(s)$ iii) solve for $i_{L}(t)$.

Fig.Q7(b)
(10 Marks)
OR
8 a. Find the Laplace transform of the periodic signal $\mathrm{x}(\mathrm{t})$ shown in Fig.Q8(a).

Fig.Q8(a)
(10 Marks)
b. For the circuit shown in Fig.Q8(b), steady state is reached with the 100 V source. At $\mathrm{t}=0$, switch k is opened. What is the current through the inductor at $t=\frac{1}{2}$ seconds.

Fig.Q8(b)
(10 Marks)

Module-5

9 a. Explain h-parameters. Express h-parameters in terms of z-parameters.
(10 Marks)
b. Find y-parameters for the circuit shown in Fig.9(b).

OR

10 a. A series RLC circuit has $\mathrm{R}=10 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C} \fallingdotseq 100 \mu \mathrm{~F}$ and is connected across a 200 V , variable frequency source, find :
i) Resonant frequency
ii) Impedance at this frequency
iii) Voltage drops across 1 and c at this frequency
iv) Quality factor
v) Bandwidth.
(07 Marks)
b. Find the value of R_{1} such that the circuit given in Fig.10(b) is resonant.

(07 Marks)
c. A series RLC circuit has $\mathrm{R}=10 \Omega, \mathrm{~L}=0.01 \mathrm{H}$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$ and it is connected across 10 mV supply. Calculate :
i) f_{0}
ii) Q_{0}
iii) Bandwidth
iv) f_{1} and $f_{2} \quad$ v) I_{0}.
(06 Marks)

[^0]: $\mathrm{i}, \mathrm{di} / \mathrm{dt}$ and $\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$

