

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Module-2

3 a. Use superposition theorem to find i_0 in the circuit shown in Fig.Q3(a).

(10 Marks)

b. Find the Thevenin's and Norton's equivalent circuits at the terminals a-b for the circuit in Fig.Q3(b).

(10 Marks)

OR

4 a. Find the current through $(10 - j3)\Omega$ using Millman's theorem Refer Fig.Q4(a).

(10 Marks)

b. Find the value of R_L for the network shown in Fig.Q4(b) that results in maximum power transfer. Also find the value of maximum power.

<u>Module-3</u>

5 a. For the circuit shown in Fig.Q5(a), the switch K is changed from position 1 to position 2 at t = 0. Steady-state condition having been reached at position 1. Find the values of

(10 Marks)

b. For the circuit shown in Fig.Q5(b), steady-state is reached with switch K open. At t = 0, the switch is closed. Determine the values $V_a(0^-)$ and $V_a(0^+)$.

(10 Marks)

OR

Module-5

 $2V_2$

IZ

n

9 a. Explain h-parameters. Express h-parameters in terms of z-parameters.b. Find y-parameters for the circuit shown in Fig.9(b).

-)I

IN:

(10 Marks)

(10 Marks)

OR

Fig.Q9(b)

- 10 a. A series RLC circuit has $R = 10\Omega$, L = 0.1H and $C = 100\mu$ F and is connected across a 200V, variable frequency source, find :
 - i) Resonant frequency
 - ii) Impedance at this frequency
 - iii) Voltage drops across l and c at this frequency
 - iv) Quality factor
 - v) Bandwidth.

Ģ

b. Find the value of R_1 such that the circuit given in Fig.10(b) is resonant.

(07 Marks)

- c. A series RLC circuit has $R = 10\Omega$, L = 0.01H and $C = 0.01\mu$ F and it is connected across 10mV supply. Calculate :
 - i) f_0 ii) Q_0 iii) Bandwidth iv) f_1 and f_2 v) I_0 .

(06 Marks)

(07 Marks)